Home

Trigonometric Functions

Radians are the arc length of a unit circle.

Trig functions are defined as the ratio of 2 sides of a right angle.

Soh Cah Toa
$\sin{\theta} = \frac{opp}{hyp}$ $\cos{\theta} = \frac{adj}{hyp}$ $\tan{\theta} = \frac{opp}{adj}$
$\csc{\theta} = \frac{hyp}{opp}$ $\sec{\theta} = \frac{hyp}{adj}$ $\cot{\theta} = \frac{adj}{opp}$

Trig Identities

Other Identities

Even/Odd Even/Odd Reciprocal Quotient
$\sin{(-\theta)} = -\sin{\theta}$ $\csc{(-\theta)} = -\csc{\theta}$ $\csc{\theta} = \frac{1}{\sin{\theta}}$ $\tan{\theta} = \frac{\sin{\theta}}{\cos{\theta}}$
$\cos{(-\theta)} = \cos{\theta}$ $\sec{(-\theta)} = \sec{\theta}$ $\sec{\theta} = \frac{1}{\cos{\theta}}$ $\cot{\theta} = \frac{\cos{\theta}}{\sin{\theta}}$
$\tan{(-\theta)} = -\tan{\theta}$ $\cot{(-\theta)} = -\cot{\theta}$ $\cot{\theta} = \frac{1}{\tan{\theta}}$  

Pythagorean Identities

Sum and Difference

$\mp$ means the opposite sign as the $\pm$ before it.

Law of Cosines

Power Reducing Formulas

Double Angle Formulas

Common Trig Values

               
Degrees $0^\circ$ $30^\circ$ $45^\circ$ $60^\circ$ $90^\circ$ $180^\circ$ $270^\circ$
Radians $0$ $\pi/6$ $\pi/4$ $\pi/3$ $\pi/2$ $\pi$ $3\pi/2$
$\sin{\theta}$ $0$ $1/2$ $\sqrt{2}/2$ $\sqrt{3}/2$ $1$ $0$ $-1$
$\cos{\theta}$ $1$ $\sqrt{3}/2$ $\sqrt{2}/2$ $1/2$ $0$ $-1$ $0$
$\tan{\theta}$ $0$ $\sqrt{3}/3$ $1$ $\sqrt{3}$ Undefined $0$ Undefined

Reference angles

Reference angles can be used to know the values fir angles in other quadrants besides the 1st quadrant.

The reference angle is always based off the x-axis.

Solving Trig Equations

  1. Find the angle in the 1st quadrant(assume the value is positive).
  2. Find all the quadrants that match the value’s sign.
  3. Calculate all reference angles.
  4. Since trig functions osculate, you have to add $2\pi n$ to your angles.

Example: $\sin{\theta} = - \sqrt{3} / 2$

  1. $\sin{\theta} = \sqrt{3} / 2 = \sin{(\pi / 3)}$
  2. Quadrants 3 and 4 are where $\sin$ is negative.
  3. Use reference angle to convert:
  4. $\frac{4 \pi}{3} + 2 \pi n$ and $\frac{5 \pi}{3} + 2 \pi n$