

Continuity

Continuous at a point:

1. $f(a)$ is defined
2. $\lim_{x \rightarrow a} f(x)$ is defined
3. $\lim_{x \rightarrow a} f(x) = f(a)$

Types of discontinuities:

- Removed
- Jump
- Infinite

- Continuous at the endpoint means it's continuous from only the left or right.

- If $f(a)$ is differentiable, then $f(a)$ is also continuous.

Finding domains:

- These are also continuous if $f(x)$ and $g(x)$ are also.

$f+g$, $f-g$, $f \cdot g$, $\frac{f}{g}$ if $g(x) \neq 0$

- The domain is the overlapping domains of f and g .

- $f(g(x)) = f \circ g$

1. Find domain of $g(x)$

2. Find domain of $f(x)$

3. Map domain of $f(x)$ to domain of $g(x)$

4. Find the overlap of the domain of $g(x)$ and the mapped domain

Ex: Find domain of $\sqrt{1+\frac{5}{x}}$ $f(x) = \sqrt{g(x)}$ $g(x) = 1 + \frac{5}{x}$

Domain of $g(x)$: $x \neq 0$

Domain of $f(x)$: $g(x) \geq 0$

Map: $1 + \frac{5}{x} \geq 0$ $\frac{5}{x} \geq -1$

If $x > 0$

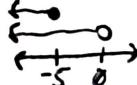
If $x < 0$ ← when multiplying or dividing

$5 \leq -x$

by a negative num, you need

$-5 \leq x$

$-5 \geq x$ to change the inequality.



$$x \geq 0 \quad \text{or} \quad x \leq -5$$

Overlap: $(x \geq 0 \text{ or } x \leq -5) \text{ and } x \neq 0$

$$(-\infty, -5] \cup (0, \infty)$$

- Domains of common functions

polynomial $(-\infty, \infty)$

\sqrt{x} $[0, \infty)$

$\frac{1}{x}$ $(-\infty, 0) \cup (0, \infty)$

a^x $(-\infty, \infty)$

$\log_b x$ $(0, \infty)$

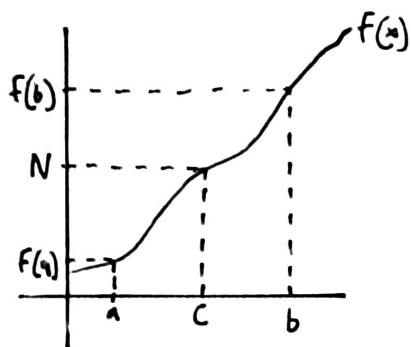
\sin/\cos $(-\infty, \infty)$

\tan $x \neq \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}, \text{etc}$

\sin^{-1}/\cos^{-1} $[-1, 1]$

\tan^{-1} $(-\infty, \infty)$

Intermediate Value Theorem (IVT):



If $f(x)$ is continuous between $[a, b]$, and $f(a) < N < f(b)$, then there exists c between (a, b) such that $f(c) = N$.

Ex: Prove that there's a root of $\cos x + e^x + x = 0$ on the interval $(-1, 0)$

$$f(x) = \cos x + e^x + x$$

$f(x)$ is domain is $(-\infty, \infty)$, therefore it's continuous between $[-1, 0]$

$$a = -1 \quad b = 0 \quad N = 0$$

$$f(a) = -0.09 \quad f(b) = 2 \quad f(-1) < N < f(0)$$

\therefore there exists c between $(-1, 0)$ such that $f(c) = N = 0$.