Home

Newton’s Method

Used to estimate where f(x)=0f(x) = 0

run=gngn+1run = g_n - g_{n+1}

rise=f(gn)rise = f(g_n)

f1(x)=slope=riserunf^1(x) = slope = \frac{rise}{run}

f1(gn)=f(gn)gngn+1f^1(g_n) = \frac{f(g_n)}{g_n - g_{n+1}}

Solve for gn+1g_{n+1}:

(gngn+1)f1(gn)=f(gn)\qquad (g_n - g_{n+1}) f^1(g_n) = f(g_n)

gnf1(gn)gn+1f1(gn)=f(gn)\qquad g_nf^1(g_n) - g_{n+1}f^1(g_n) = f(g_n)

gn+1f1(gn)=f(gn)gnf1(gn)\qquad -g_{n+1}f^1(g_n) = f(g_n) - g_nf^1(g_n)

gn+1f1(gn)=gnf1(gn)f(gn)\qquad g_{n+1}f^1(g_n) = g_nf^1(g_n) - f(g_n)

gn+1=gnf1(gn)f(gn)f1(gn)\qquad g_{n+1} = \frac{g_nf^1(g_n) - f(g_n)}{f^1(g_n)}

gn+1=gnf(gn)f1(gn)\qquad g_{n+1} = g_n - \frac{f(g_n)}{f^1(g_n)}


Steps:

  1. Use algebra to find f(x)f(x) that when equaling 0 gives you your answer
  2. Find f1(x)f^1(x) using f(x)f(x)
  3. Make an initial guess gng_n where you think f(x)=0f(x)=0 might be
  4. Find the next point with gn+1=gnf(gn)f1(gn)g_{n+1} = g_n - \frac{f(g_n)}{f^1(g_n)}
  5. Keep iterating points until you get the accuracy you want. More iterations equals more accuracy.

Example:

Find what 2\sqrt{2} equals.

Step 1:

2=x\qquad \sqrt{2} = x

2=x2\qquad 2 = x^2

0=x22\qquad 0 = x^2 - 2

f(x)=x22\qquad f(x) = x^2 - 2

Step 2:

f1(x)=2x\qquad f^1(x) = 2x

Step 3:

g1=1.5\qquad g_1 = 1.5

Step 4:

f(g1)=(1.5)22=0.25\qquad f(g_1) = (1.5)^2 - 2 = 0.25

f1(g1)=2(1.5)=3\qquad f^1(g_1) = 2(1.5) = 3

g2=1.50.253=1.416\qquad g_2 = 1.5 - \frac{0.25}{3} = 1.41\overline6

Step 5:

f(g2)=(1.416)22=0.00694\qquad f(g_2) = (1.41\overline6)^2 - 2 = 0.0069\overline4

f1(g2)=2(1.416)=2.83\qquad f^1(g_2) = 2(1.41\overline6) = 2.8\overline3

g3=1.4160.006942.83=1.414215686\qquad g_3 = 1.41\overline6 - \frac{0.0069\overline4}{2.8\overline3} = 1.414215686

2=1.414213562\sqrt{2} = 1.414213562