Used to estimate where $f(x) = 0$
$run = g_n - g_{n+1}$
$rise = f(g_n)$
$f^1(x) = slope = \frac{rise}{run}$
$f^1(g_n) = \frac{f(g_n)}{g_n - g_{n+1}}$
Solve for $g_{n+1}$:
$\qquad (g_n - g_{n+1}) f^1(g_n) = f(g_n)$
$\qquad g_nf^1(g_n) - g_{n+1}f^1(g_n) = f(g_n)$
$\qquad -g_{n+1}f^1(g_n) = f(g_n) - g_nf^1(g_n)$
$\qquad g_{n+1}f^1(g_n) = g_nf^1(g_n) - f(g_n)$
$\qquad g_{n+1} = \frac{g_nf^1(g_n) - f(g_n)}{f^1(g_n)}$
$\qquad g_{n+1} = g_n - \frac{f(g_n)}{f^1(g_n)}$
Find what $\sqrt{2}$ equals.
Step 1:
$\qquad \sqrt{2} = x$
$\qquad 2 = x^2$
$\qquad 0 = x^2 - 2$
$\qquad f(x) = x^2 - 2$
Step 2:
$\qquad f^1(x) = 2x$
Step 3:
$\qquad g_1 = 1.5$
Step 4:
$\qquad f(g_1) = (1.5)^2 - 2 = 0.25$
$\qquad f^1(g_1) = 2(1.5) = 3$
$\qquad g_2 = 1.5 - \frac{0.25}{3} = 1.41\overline6$
Step 5:
$\qquad f(g_2) = (1.41\overline6)^2 - 2 = 0.0069\overline4$
$\qquad f^1(g_2) = 2(1.41\overline6) = 2.8\overline3$
$\qquad g_3 = 1.41\overline6 - \frac{0.0069\overline4}{2.8\overline3} = 1.414215686$
$\sqrt{2} = 1.414213562$