Home
Newton’s Method
Used to estimate where f(x)=0

run=gn−gn+1
rise=f(gn)
f1(x)=slope=runrise
f1(gn)=gn−gn+1f(gn)
Solve for gn+1:
(gn−gn+1)f1(gn)=f(gn)
gnf1(gn)−gn+1f1(gn)=f(gn)
−gn+1f1(gn)=f(gn)−gnf1(gn)
gn+1f1(gn)=gnf1(gn)−f(gn)
gn+1=f1(gn)gnf1(gn)−f(gn)
gn+1=gn−f1(gn)f(gn)
Steps:
- Use algebra to find f(x) that when equaling 0 gives you your answer
- Find f1(x) using f(x)
- Make an initial guess gn where you think f(x)=0 might be
- Find the next point with gn+1=gn−f1(gn)f(gn)
- Keep iterating points until you get the accuracy you want. More iterations equals more accuracy.
Example:
Find what 2 equals.
Step 1:
2=x
2=x2
0=x2−2
f(x)=x2−2
Step 2:
f1(x)=2x
Step 3:
g1=1.5
Step 4:
f(g1)=(1.5)2−2=0.25
f1(g1)=2(1.5)=3
g2=1.5−30.25=1.416
Step 5:
f(g2)=(1.416)2−2=0.00694
f1(g2)=2(1.416)=2.83
g3=1.416−2.830.00694=1.414215686
2=1.414213562